Smart device

From Clinfowiki
Revision as of 01:27, 27 October 2015 by Sbarksdale (Talk | contribs)

Jump to: navigation, search

Smart devices are mechanical devices that have been integrated with semiconductor computer chips (CPUs, memory and/or logic computer chips) in order to allow them to interface and communicate with other devices or with the Internet, in general.

Introduction

Over the past several years, the world’s consumer markets have been transformed with the design and release of smart devices. The most notable example of this is the now-ubiquitous smartphone, but it also includes other devices such as tablets, “phablets” and a large number of “wearables” like FitBits™. In the wake of this technological transformation on how people communicate and interact with the world, the healthcare industry has started to adopt this technology for its own, specific uses. Medical devices are rapidly being upgraded (or designed initially) to have these capabilities to leverage existing IT infrastructures with the goal of providing more comprehensive and real-time monitoring, sharing and analysis of medical data.

Internet of Things

The Internet of Things refers to ever-growing number of smart devices, ranging from “smart appliances” to smartphones/tablets to wearable devices that are all talking to each other at all times. Although smartphones were the innovators driving the initial development, companies that develop products for healthcare have been quick to leverage the technology and increase the scope of the Internet of Things. Hospital and Health Networks has offered a functional definition of what qualifies a device to be considered part of the Internet of Things: a device must be aware, a device must be autonomous and a device must be actionable [LINK]. A device that is aware is essentially a sensor of some sort. For healthcare purposes, it might be measuring something like heart rate or body temperature. A device that is autonomous essentially performs a data transmission function on its own, based on whatever parameters with which it is programmed. For healthcare purposes, this might be, on an hourly basis, sending heart rate or temperature data that it has measured to a central database somewhere. Finally, a device that is actionable means that it is monitoring something with a specific action to be taken when a parameter enters a certain range. For healthcare purposes, it might be transmitting a warning alert to a patient’s doctor or family members when body temperature gets too high or, worse, heart rate goes to zero.

Right now, the Internet of Things in healthcare is very much in its infancy, but it has already had a significant impact on healthcare. Examples of this technology already in use include things like the consumer-based devices (FitBits), wearable devices like insulin pumps, implanted devices like pacemakers and bodily function sensors and stationary monitors like IV pumps and fetal monitors [LINK]. While impressive, these initial devices still have a very limited scope of use. However, new devices that will be part of the Internet of Things are going to be released over the next several years that are going to greatly increase this scope and very likely transform healthcare.

A major topic of interest in Informatics is smart device integration with electronic medical record (EMR) systems. Smart device integration has been discussed by Rausch and Judd in 2006 (Conf Proc IEEE Eng Med Biol Soc. 2006;Suppl:6740-3). These authors mention that "interoperability between medical devices and electronic medical records (EMR) is one key to developing a system of higher quality, safety and efficient healthcare delivery."

The integration of these smart chips with medical devices can be one-way (for example, from device to EMR) or two-way communication. There are use cases for both. For example, in the case of a pulse-oximeter, one way posting of data to the EMR from the device may be all that is necessary to automate the documentation and monitoring functions provided by the device itself. On the other hand, two-way communication via wireless networks between the EMR and smart infusion pumps has been proposed and successfully implemented, albeit in very few locations to date.

Impact on Healthcare Cost and Efficiency

In 2015, the Congressional Budget Office (CBO) estimated healthcare expenditures at 17.6% of GDP [LINK]. As a result, there have been increasing levels of pressure placed on the U.S. healthcare system to bring the cost growth down to more in line with inflation and to bring the overall cost of healthcare per capita more in line with other industrialized nations. As a result, healthcare organizations now have a much stronger incentive to be a lot more productive and efficient with their resources. The increasing use of smart device technology in healthcare will enable these organizations to make many of their processes more efficient and effective, which will allow them to see lower costs and better outcomes.

The adoption of managing chronic illness utilizing mobile phone technology may ultimately lead to a reduction in hospital admissions and subsequently a reduction in healthcare dollars being spent. For the complex management of chronic disease, usability and user-interface design are of prime importance. New touch interfaces, such as the iPhone, are a considerable improvement in terms of usability. As mobile phone technology improves, the ‘average phone’ will be equipped with optimal device features such as SMS/MMS, glucometers, air sensors and GPS. Smith, Joshua C., and Bruce R. Schatz. "Feasibility of Mobile Phone-Based Management of Chronic Illness." Proc. of AMIA 2010 Symposium, Washington, D.C. Web. 20 Jan. 2011. [1].

Improving preventive care has always been one of the staples of any strategy geared towards improving overall health outcomes and lowering the cost of health care. In turn, one of the staples of any strategy to improve preventive care has always been to better engage people to take a more active role in their own care. Over the past several years, one of the most dramatic transitions that has occurred that encompasses both is the increasing number of people using personal fitness devices to track their heart rates and activity levels. The best-known of these devices is probably the FitBit™ (2), although there are a multitude of products already released in this market space.

One of the things to which healthcare organizations are turning in order to increase productivity and efficiency is data. The potential for these improvements exist in all facets of data use. As such, health care organizations are looking for better ways to collect data, transfer data, store data, analyze data, access data and share and leverage data. Smart devices greatly assist this effort my automating more data collection, transmission and storage, making these data processes cheaper and quicker and more efficient.

Device integration can be one-way (from device to EMR) or two-way communication. There are use cases for both. For example, in the case of a pulse-oximeter, one way posting of data to the EMR from the device may be all that is necessary to automate the documentation and monitoring functions provided by the device itself. On the other hand, two-way communication via wireless networks between the EMR and smart infusion pumps has been proposed and successfully implemented, albeit in very few locations to date.

Adoption

The adoption of managing chronic illness utilizing mobile phone technology may ultimately lead to a reduction in hospital admissions and subsequently a reduction in healthcare dollars being spent. For complex management of chronic disease usability and user-interface design are of prime importance. New touch interfaces, such as the iPhone, are a considerable improvement in terms of usability. As mobile phone technology improves the ‘average phone’ will be equipped with optimal device features such as SMS/MMS, glucometer, air sensor, and GPS. Smith, Joshua C., and Bruce R. Schatz. "Feasibility of Mobile Phone-Based Management of Chronic Illness." Proc. of AMIA 2010 Symposium, Washington, D.C. Web. 20 Jan. 2011. [1].

Regulation of Medical Devices, including "Smart" Medical Devices

In the United States, the Food and Drug Administration provides regulatory oversight for medical devices, including some "smart" devices such as smart infusion pumps (see www.fda.gov/CDRH/510khome.html#download).

The FDA program governing these devices takes its name from section 510(k) of the Food, Drug and Cosmetic Act which requires manufacturers to register and notify FDA before marketing a medical device. 510(k) is known also as Premarket Notification (PMN).

Specific Examples